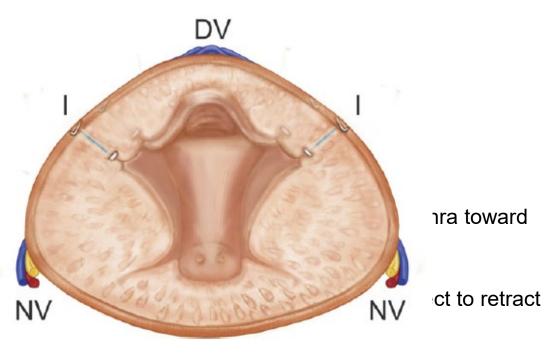


Prostatic urethral lift (UroLift)

Yeong Uk Kim

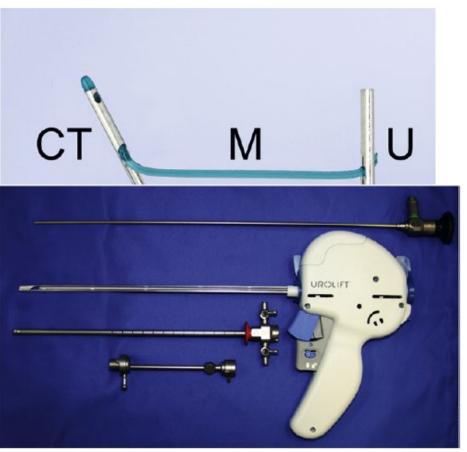
Department of Urology, College of Medicine, Yeungnam University, Daegu, Korea


Transurethral resection of the prostate (TURP)

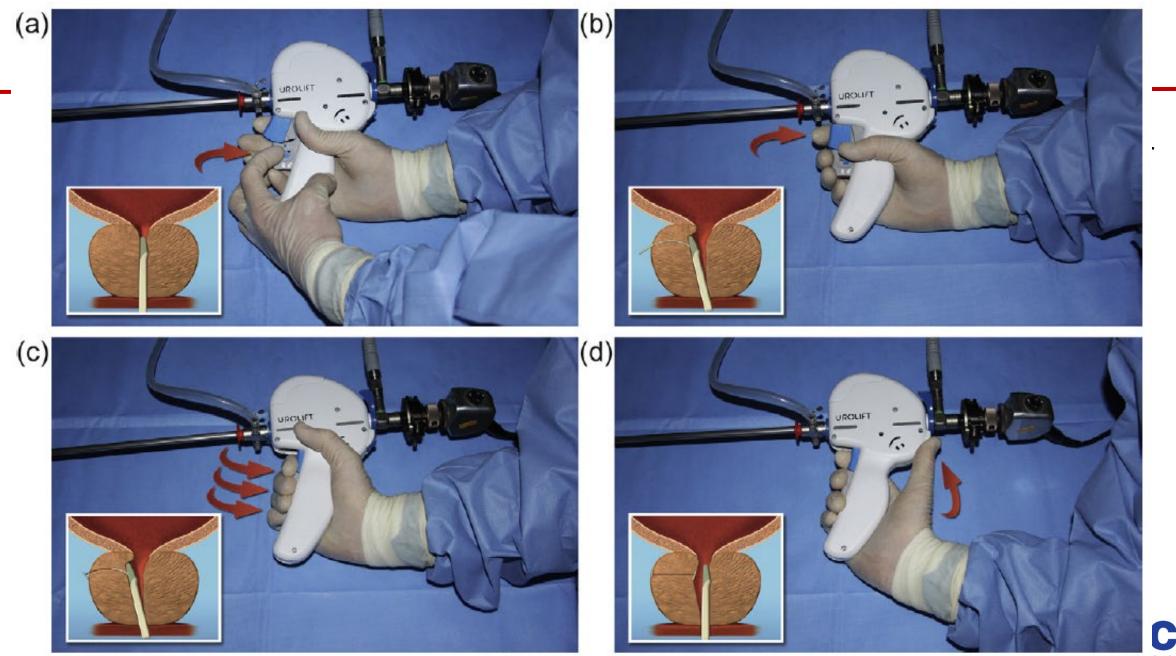
- The gold standard treatment of the patients with moderate-severe voiding symptoms attributed to BPH that are refractory to medical therapy
- Disadvantages
 - Needed to general or spinal anesthesia
 - Keep the urinary catheter for 1~2 days
 - Perioperative and long-term complications: About 20%
 - Ejaculatory dysfunction (65%)
 - Erectile dysfunction (10%)
 - Urethral stricture (7%)
 - Urinary incontinence (3%)

Prostatic urethral lift (PUL) therapy

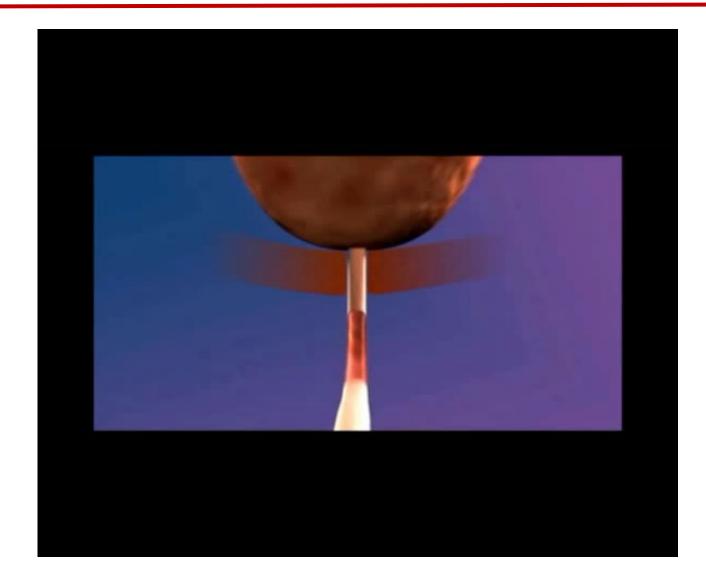
- Marketed name: UroLift[®] (NeoTract, Inc., Pleasanton, CA, USA)
- A new less invasive technique for LUTS second.
- Theory
 - Altering prostate anatomy without tissue ablation
 - Urethra is compliant, the glandular tissue is compress
 - Thus, applying a tissue-retracting implant between the the capsule, thereby expanding the urethral lumen.
 - Implant placement at approximately 2 and 10 o'clock the obstructive lobes anterolaterally.


Eur Urol 2013;64:292-299

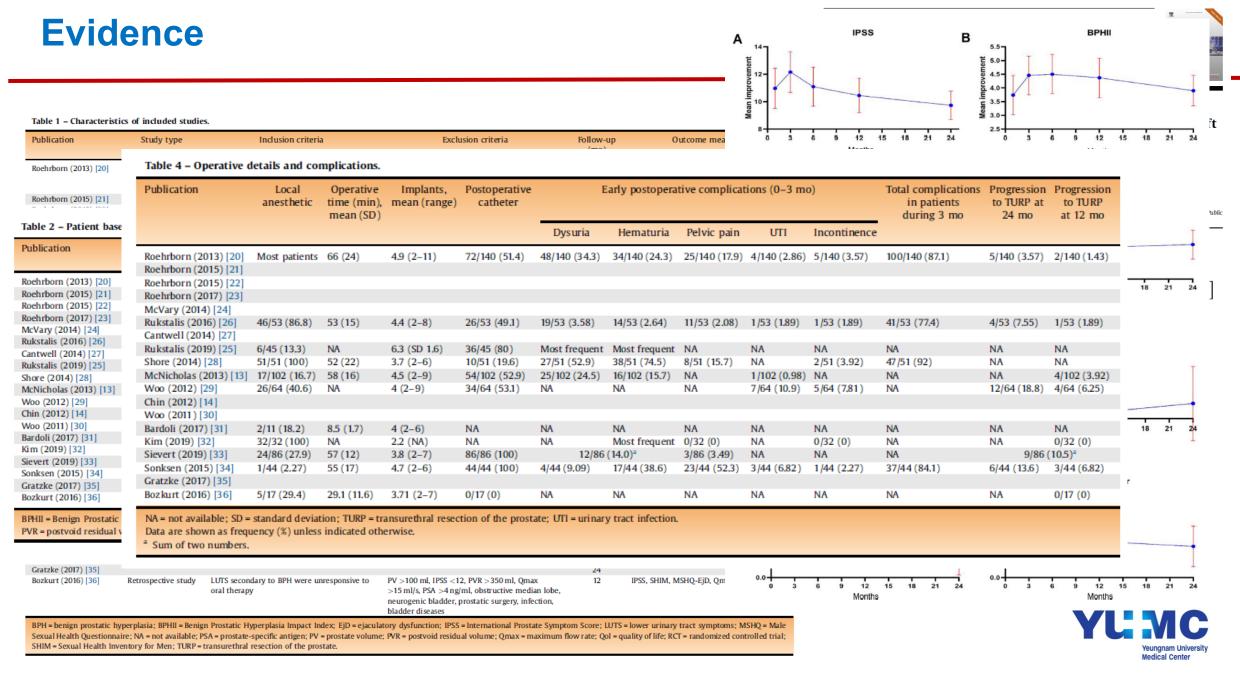
Equipment of PUL


The permanent implant

- A nitinol capsular tab : 0.6 mm diameter x 8 mm long
 - Spring-driven 19-gauge needle : traverse the prostatic lobe.
 - Attach to capsular surface.
- A stainless-steel urethral end piece : 8 mm x 1 mm x 0.5 n
 - Invaginate into the urothelium.
 - Minimizing foreign material exposure to the urine stream and promoting
- A polyethylene teraphthalate (PET) monofilament (0.4 mm
 - Allows future interventions including TURP and laser treatments if nece
- Direct visualization
 - A smaller 2.9-mm 0° telescope.
 - The UroLift system.
 - 20Fr. cystoscopy sheath.



Eur Urol 2013;64:292-299



Surgical technique (VOD)

Considerations

The patients` selection

The number of PUL implants

Patients`selection

$ \begin{array}{c} \mbox{held} (201) [20] \\ \mbox{Held} (201) [21] \\ \mbox{Held} (201) [22] \\ \mbox{Held} (201) [23] \\ \mbox{Held} (201) [23] \\ \mbox{Held} (201) [24] \\ \mbox{Held} ($	$ \frac{ _{1} _{1} _{1} _{1} _{1} _{1} _{1} _$	$ \frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ }}{ $	Table 1 – Characterist Publication	ics of included studie Study type	s. Inclusion criteria		Exclu	sion criteria	Follow- (mo)	Mean impr		Ğ. 4.0− 		
$ \begin{aligned} & \text{Bicheline} (2018) [21] \\ & \text{Bechhem} (2017) [23] \\ & \text{Buschastic} (2007) [26] \\ & B$	$ \begin{aligned} & \text{Line diama (2013) [21]} & \text{Line diama (2013) [22]} & \text{Line diama (2013) [22]} & \text{Line diama (2013) [23]} & Line diama (2013) [23$		toehrborn (2013) [20]	Blinded RCT	Aged >50 yr no prior RPH treatm	ent washed	Obstructive median l	the retention PVR \25	Ωml 12	8 3	6 9 12 15 18		6 9 12 15 18 21	1 24
$\frac{ _{1} _{1} _{1} _{1} _{1} _{1} _{1} _$	$\frac{ \mathbf{x} _{1}}{ \mathbf{x} _{1}} = \frac{ \mathbf{x} _{1}}{ \mathbf{x} _{1}$	$\frac{ \mathbf{x} _{1}}{ \mathbf{x} _{1}} = \frac{ \mathbf{x} _{1}}{ \mathbf{x} _{1}$			Table 2 – Patient base	line charac	teristics of clinica	studies included	in this meta-		Months	-	Months	
$\frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ $	$\frac{1}{10^{10}(10^{10})} \frac{1}{10^{10}} \frac{1}{$	$\frac{1}{10^{10} (201) [2]}$ $\frac{1}{10^{10} (20$								С		D		_
$\frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ } = \frac{ }{ $	$ \begin{array}{c} \text{Bernion (2017) [23]} \\ \text{Wey (2016) [24]} \\ \text{Wey (2016) [24]} \\ \text{Wey (2016) [24]} \\ \text{Rechfnom (2015) [22]} \\ \text{Rechfnom (2015) [23]} \\ \text{Starker (2014) [28]} \\ \text{Starker (2017) [31]} \\ \text{Rechfnom (2015) [34]} \\ Rechf$	$\frac{\operatorname{Rechtor (201)}(2)}{\operatorname{Rechtor (201)}(2)} \operatorname{Rechtor (201)}(2) $			Publication	Number				3.0-	Qol	6-	Qmax	er,)
$ \begin{array}{c} CAvy(2) (4) (4) \\ Rechood(2) (5) \\ (5) \\ Cossover study \\ ancel(2) (4) (2) \\ Rechod(2) (5) (2) \\ Rechod(2) (2) (2) \\ (2) (2) \\ (2) (2) (2) \\ (2) (2) \\ (2) (2) \\ ($	$ \begin{array}{c} \label{eq:charge} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	$ \frac{1}{2} 1$	oehrborn (2017) [23]							±] T T	-	(Sle		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Laketalis (2016) [26] crossover study havethlom (2015) [21] havethlom (2015) [21] havethlom (2015) [22] havethlom (2015) [23] havethlom (2015) [24] havethlom (2015) [23] havethlom (2015) [24] havethlom (2015) [23] havethlom (2015) [24] havethlom (2015) [25] havethlom (2015) [24] havethlom (2015) [25] havethlom (2015) [25] havethlom (2015) [25] havethlom (2015) [25] havethlom (2015) [24] havethlom (2015) [25] havethlom (2015) [24] havethlom (2015) [25] havethlom (2015) [24] havethlom (2015) [25] havethlom (2015) [24] havethlom (2015) [24] havethlom (2015) [25] havethlom (2015) [24] havethlom (2015) [25] havethlom (2015) [24] havethlom (2015) [24] havethlom (2015) [25] havethlom (2015) [24] havethlom (2015) [25] havethlom (2015) [25] havethlom (2015) [24] havethlom (2015) [25] havethlom (2015) [25] havethlom (2015) [25] havethlom (2015) [24] havethlom (2015) [25] havethlom (2015) [25] havet	$ \begin{array}{c} \text{abcalis (2016) [2b]} \\ \text{matvell (2014) [27]} \\ \text{abcalis (2019) [25]} \\ \text{receptive coher} \\ \text{tore (2014) [27]} \\ \text{abcalis (2019) [25]} \\ \text{receptive coher} \\ \text{tore (2014) [27]} \\ \text{matvell (2014) [27]} \\ \text{matvell (2014) [27]} \\ \text{matvell (2014) [27]} \\ \text{matvell (2014) [22]} \\ \text{receptive coher} \\ \text{tore (2014) [23]} \\ \text{receptive coher} \\ \text{tore (2012) [29]} \\ \text{receptive coher} \\ \text{tore (2017) [23]} \\ \text{receptive coher} \\ tore (201$	AcVary (2014) [24]			140	67 (8.6)	44.5 (12.4)	22.2 (5.4)	men	I	÷ 5- ⊺ ⊤		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} \mbox{Rel} (2014) [27] \\ \mbox{Raktalis} (2019) [25] \\ \mbox{Raktalis} (2019) [25] \\ \mbox{Raktalis} (2019) [22] \\ \mbox{Raktalis} (2019) [23] \\ \mbox{Raktalis} (2019) [24] \\ \mbox{Raktalis} (2019) [25] \\ \mbox{Raktalis} (2019) [26] \\ \mb$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Crossover study						a 2.5-		T E		T
$ \begin{array}{c} \text{Introvell (2014) [27]} \\ \text{Bukralis (2019) [25]} \\ \text{Fragective cohert} \\ \text{Bukralis (2019) [25]} \\ \text{Anore (2014) [27]} \\ \text{Fragective cohert} \\ \text{Bukralis (2019) [25]} \\ \text{Anore (2014) [27]} \\ \text{Fragective cohert} \\ \text{Bukralis (2019) [25]} \\ \text{Anore (2014) [27]} \\ \text{Fragective cohert} \\ \text{Bukralis (2019) [25]} \\ \text{Anore (2014) [27]} \\ \text{Sone cohert} \\ \text{Methodus (2017) [23]} \\ \text{Anore (2014) [27]} \\ \text{Sone cohert} \\ \text{Methodus (2017) [23]} \\ \text{Anore (2014) [27]} \\ \text{Sone cohert} \\ \text{Methodus (2017) [23]} \\ \text{Anore (2014) [27]} \\ \text{Sone cohert} \\ \text{Methodus (2017) [23]} \\ \text{Anore (2014) [28]} \\ \text{Sone cohert} \\ \text{Methodus (2017) [29]} \\ \text{Pragective cohert} \\ \text{Move (2012) [29]} \\ \text{Pragective cohert} \\ \text{Move (2012) [29]} \\ \text{Pragective cohert} \\ \text{Move (2012) [29]} \\ \text{Bardelia (2017) [31]} \\ \text{Severt (2019) [32]} \\ \text{Severt (2019) [32]} \\ \text{Severt (2019) [32]} \\ \text{Severt (2019) [33]} \\ \text{Severt (2019) [34]} \\ \text{Add (3 (6.8))} \\ \text{Add (3 (6.8))} \\ \text{Add (1143)} \\ \text{Sone (2017) [36]} \\ \text{Severt (2019) [34]} \\ \text{Severt (2019) [34]} \\ \text{Add (2017) [35]} \\ \text{Severt (2019) [34]} \\ \text{Severt (2019) [34]} \\ \text{Add (2017) [35]} \\ \text{Severt (2019) [34]} \\ \text{Severt (2019) [34]} \\ \text{Add (2017) [35]} \\ \text{Severt (2019) [34]} \\ \text{Add (2017) [35]} \\ \text{Severt (2019) [34]} \\ \text{Add (2017) [35]} \\ \text{Severt (2019) [34]} \\ \text{Severt (2019) [34]} \\ \text{Add (2017) [35]} \\ \text{Severt (2019) [34]} \\ \text{Add (2017) [36]} \\ Add (2017) [36$	$ \begin{array}{c} \text{Introduct} (204) [27] \\ \text{Tabukatilis} (209) [25] \\ \text{Tabukatilis} (209) [26] \\ \text{Tabukatilis} (209) [27] \\ \text{Tabukatilis} (209) [27] \\ \text{Tabukatilis} (209) [27] \\ \text{Tabukatilis} (209) [28] \\ \text{Tabukatilis} (2010) [28] \\ \text{Tabukatilis} (20$	an over (2014) [27] akkalis (2019) [25] Prospective colort kork(2014) [28] Prospective colort kork(2014) [29] Prospective colort kork(2014) [29] Prospective colort kork(2012) [29] Prospective colort min (2012) [21] Prospective colort min (2015) [24] Prospective colort Min (2015) [25] Prospective colort Min (2015) [26] Prosp								du 1	1			
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$ \begin{array}{c} \text{Raktalis} (2016) [25] \\ \text{Roteclais} (2016) [25] \\ \text{Sofe} (2014) [28] \\ \text{Roteclais} (2013) [13] \\ \text{Roteclais}$	$\frac{1}{1} \frac{1}{1} \frac{1}$								E 2.0-				
$\begin{aligned} & \text{Listrais} (2019) [25] \\ & \text{Prospective cohort} \\ & \text{Balkstais} (2019) [25] \\ & \text{Prospective cohort} \\ & \text{Balkstais} (2019) [25] \\ & \text{Atsias} (2019) [25] \\ & \text{Balkstais} (2019) [23] \\ & \text{Balkstais} (2013) [13] \\ & \text{Droc } (2014) [28] \\ & \text{Balkstais} (2013) [13] \\ & \text{Balkstaik} (2013) [13]$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} Can well (2014) [27] \\ For (2014) [28] \\ For (2014) [29] \\ For (2012) [20] \\$	antwell (2014) [27]							Me		-= 3- 1	1 -	+
$ \begin{array}{c} \text{Cartwell (2014) [27]} \\ \text{interval} [2013) [27] \\ \text{respective colort} \\ \text{Kexkelais [2019] [23]} \\ Kexkelais [2019] $	$ \begin{array}{c} \text{Cattreel} (2014) [27] \\ \text{cattreel} (2014) [28] \\ \text{Prospective cohort} \\ \text{woo} (2012) [29] \\ \text{Prospective cohort} \\ \text{woo} (2011) [31] \\ \text{Retrospective study} \\ \text{int} (2017) [31] \\ \text{Retrospective study} \\ \text{int} (2015) [34] \\ \text{Athele and prostatic Hyperplasia Impact Index; EjD = discultatis, cystolithials, motions \\ \text{matchella prostatic Hyperplasia Impact Index; EjD = discultatis, cystolithials, motions \\ \text{matchella prostatic Hyperplasia Impact Index; EjD = discultatis, cystolithials, motions \\ \text{matchella prostatic Hyperplasia Impact Index; EjD = discultatis, cystolithials, motions \\ \text{matchella prostatic Hyperplasia Impact Index; EiD = discultatis, cystolithials, motions \\ \text{matchella prostatic Hyperplasia Impact Index; EjD = discultatis, cystolithials, motions \\ \text{matchella prostatic Hyperplasia Impact Index; EiD = discultatis, cystolithials, motions \\ \text{matchella prostatic Hyperplasia Impact Index; EjD = discultatis, cystolithials, motions \\ \text{matchella prostatic Hyperplasia Impact Index; EiD = discultatis, cystolithials, motions \\ \text{matchella prostatic Hyperplasia Impact Index; EiD = discultatis, cystolithials, motions \\ \text{matchella prostatic Hyperplasia Impact Index; EiD = discultatis, cystolithials, motions \\ \text{matchella prostatic Hyperplasia Impact Index; EiD = discultatis, cystolithials, motions \\ \text{matchella prostatic Hyperplasia Impact Index; EiD = discultatis, cystolithials, motions \\ \text{matchella prostatic surgery infinitions } \\ \text{matchella bela prostatic surgery infinitions } \\ \text{matchella bela prostatic surgery infinitions } \\ matchella bela prostatic hyperplasia Impact Index; EiD = discultations discutter metchala bela $	$ \begin{array}{c} Can twell (2014) [22) \\ nore (2014) [23) \\ nore (2014) [23) \\ shore (2017) [34) \\ shore (2017) [35] \\ shore (2017) [35] \\ shore (2017) [33) \\ shore (2017) [34) \\ shore (2017) [35] \\ shore (2017) [36] \\ shore (2017) [36$	- latalia (2010) [25]	Decensorius asheet		53	64 (8.0)	40.3 (9.9)	23.3 (5.5)	1.5		¥₂		
hore (2014) [28] Prospective cohort textleckolas (2013) [13] Prospective cohort textleckolas (2017) [13] 1 1 0 0.5 (102) 45.5 (15.1) 25.6 (5.3) Bardoli (2017) [31] 1 1 0.5 (102) 45.5 (15.1) 25.6 (5.3) Bardoli (2017) [31] 1 1 0.5 (102) 45.5 (15.1) 25.6 (5.3) Bardoli (2017) [31] 3 86 66 26.2 (11.5) 43 (18.8) 20.822 (6.5) Bardoli (2017) [31] 86 66 26.2 (11.5) 43 (18.8) 20.822 (5.7) Graztez (2017) [35] 6 7 7 6 7 (0.8) 44.1 (14.3) 22.8 (4.4) Bruti = Beniga Prostatic Hyperplasia Impact Index; EJD = ejaculatory dysfunction; IBS = Inter prospective study inter(2019) [33] Prospective study prospective study andoli (2017) [31] Arb (2016) [36] 17 67 (10.8) 44.1 (14.3) 22.8 (4.4) Bruti = Beniga Prostatic Hyperplasia Impact Index; EJD = ejaculatory dysfunction; IBS = Inter MSHQ-EJD, qmax < 45 mig, FW < 350 mi, PW = 50 mi, StiMs < 50 mi, StiMs < 50 mi, StiMs < 50 mi, StiMs < 50 mi, PW = postrote to mIArbox (2017) [35] 6 7 7 0 mi, Bruti = concent approximation; PW = postrote or bladder cancer, severe conclustive median hole, remedian procedure, pelvic surgery infraction, $= 50 mi, StiMs < 50 mi, StiMs = 70 mi$	hore (2014) [28] Prospective cohort textkicholas (2013) [13] Prospective study int (2015) [13] till 70.5 (102) 45.5 (15.3) 25.6 (5.3) Bardoli (2017) [13] till 70.5 (102) 45.5 (15.3) 22.5 (5.3) Bardoli (2017) [13] till 70.5 (102) 44.6 (3.6.8) 38 (12) 22.2 (5.7) Bozkurt (2016) [36] 17 67 (71.0.8) 44.1 (14.3) 22.8 (4.4) Prospective study Prospective study Prospective study Infection, bacterial prostatic, typeptakia Impact Index: EJD = ejaculatory dysfunction; IISS = Inter MSHQ-EJD, Gnax \leq 5 m/s, P/R \sim 350 ml, provide till prostatic \sim prospective reduna lobe, recurrent module studies textke (2017) [15] addut (2016) [36] Retrospective study LUTS secondary to BH were unresponsive to addut (2016) [36] Retrospective study LUTS secondary to BH were unresponsive to addut (2016) [36] Retrospective study LUTS secondary to BH were unresponsive to addut (2016) [36] Retrospective study LUTS secondary to BH were unresponsive to addut (2016) [36] Retrospective study LUTS secondary to BH were unresponsive to addut (2016) [36] Retrospective study LUTS secondary to BH were unresponsive to addut (2016) [36] Retrospective study LUTS secondary to BH were unresponsive to addut (2016) [36] Retrospective study LUTS secondary to BH were unresponsive to addut (2016) [36] Retrospective study LUTS secondary to BH were unresponsive to addut (2016) [36] Retrospective study LUTS secondary to BH were unresponsive to addut (2016) [3	hore (2014) [28] Prospective cohort (AcKoholas (2013) [13] Prospective study (Prospective study (Prospect	IKSTAIIS (2019) [25]	Prospective conort							6 9 12 15 18	21 24 0 3	6 9 12 15 18 21	24
$\begin{array}{c} \text{Mex}(x) (x) (x) (x) (x) (x) (x) (x) (x) (x) $	$\frac{McNicholas}{McNicholas} (2013) \frac{13}{13} \frac{102}{15} \frac{68}{10.0} \frac{48}{10.0} \frac{232}{15} \frac{26.1}{15} \frac{232}{22.6} \frac{6.1}{5.4} \frac{232}{22.6} \frac{6.1}{5.4} \frac{232}{22.6} \frac{6.1}{5.4} \frac{232}{22.6} \frac{6.1}{5.4} \frac{232}{22.6} \frac{6.1}{5.4} \frac{232}{22.6} \frac{6.1}{5.4} \frac{100}{20.2} \frac{11}{22.6} \frac{100}{10.0} \frac{48}{10.0} \frac{232}{22.6} \frac{6.1}{5.4} \frac{100}{20.2} \frac{11}{22.6} \frac{100}{10.0} \frac{11}{10.0} $	$\begin{array}{c} \text{Melkicholas (2013) [13]} & \text{Prospective cohort} \\ \text{Melkicholas (2013) [13]} & \text{Prospective cohort} \\ \text{Melkicholas (2013) [13]} & \text{Prospective cohort} \\ \text{Moc (2011) [29]} & \text{Gef (7, 7, 3)} & \text{Si (23)} & \text{22,6 (5,4)} \\ \text{Moc (2011) [30]} & \text{Moc (2011) [31]} & \text{11} & 70.5 (10.2) & 45.5 (15.1) & 25.6 (5.3) \\ \text{Moc (2011) [31]} & \text{Mic (2017) [31]} & \text{11} & 70.5 (10.2) & 45.5 (15.1) & 25.6 (5.3) \\ \text{Moc (2011) [30]} & \text{Mic (2017) [31]} & \text{11} & 70.5 (10.2) & 45.5 (15.1) & 25.6 (5.3) \\ \text{Mic (2017) [31]} & \text{Retrospective cohort} \\ \text{Moc (2011) [30]} & \text{Retrospective study} \\ \text{Int (2017) [31]} & \text{Retrospective study} \\ \text{Int (2017) [31]} & \text{Retrospective study} \\ \text{Int (2019) [32]} & \text{Retrospective study} \\ \text{Int (2016) [36]} & 17 & 67 (10.8) & 44.1 (14.3) & 22.8 (4.4) \\ \text{Moc (2011) [30]} & \text{Retrospective study} \\ \text{Interlap conduct on statice (2017) [35]} \\ \text{maken (2015) [34]} & \text{Nohlinded RT} \\ \text{Moc (3011) [35]} & \text{Retrospective study} \\ \text{Interlap conduct on statice (2017) [35]} \\ \text{maken (2015) [34]} & \text{Nohlinded RT} \\ \text{Moc (3011) [35]} & \text{Retrospective study} \\ \text{mixe (2017) [35]} \\ \text{maker (2016) [36]} & \text{Tr (10.8)} & \text{detarlal prostatic (bec, regional cond), regional cond, severe conorbidities contains, synthiling, set (11.5) \\ \text{Sol m, SiMD - 5} & \text{Simily response to model (11.5) } Mic (30) m, Mic$			Rukstalis (2019) [25]			44.2 (11.2)			Months		Months	
$\frac{1}{12} Prospective cohort}$ $\frac{Voo (2012) [29]}{Voo (2012) [29]} Prospective cohort}$ $\frac{Voo (2012) [29]}{Voo (2011) [30]} Prospective cohort}$ $\frac{Voo (2011) [30]}{Voo (2011) [30]} Prospective cohort}$ $\frac{Voo (2011) [30]}{Voo (2011) [30]} Prospective cohort}$ $\frac{Voo (2011) [30]}{Voo (2011) [31]} Prospective cohort}$ $\frac{Voo (2011) [32]}{Voo (2011) [32]} Prospective cohort}$ $\frac{Voo (2011) [31]}{Voo (2011) [32]} Prospective cohort}$ $\frac{PVR}{VR} = Portation (Prospective cohort)$ $\frac{PVR}{$	$\frac{1}{12} \frac{1}{12} \frac$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	hore (2014) [28]	Prospective cohort										
tchkicholas (2013) [13] Prospective cohort wo (2012) [29] Prospective cohort wo (2012) [29] Prospective cohort wo (2012) [29] Prospective cohort wo (2011) [30] $= 1$ To (5 (102) $= 45.5 (15.1) = 25.6 (5.3)$ hin (2012) [31] $= 1$ To (5 (102) $= 45.5 (15.1) = 25.6 (5.3)$ bin (2012) [32] $= 32$ $= 67 (7)$ $= 50 (7)$ $= 19.3 (2.4)$ Selevert (2019) [33] $= 86$ $= 66.2 (11.5) = 38 (12) = 22.6 (2.4)$ = 30 cohort (2015) [34] + 44 = 63 (6.8) = 38 (12) = 22.5 (2.4) = 30 cohort (2015) [34] + 44 = 63 (6.8) = 38 (12) = 22.5 (2.4) = 30 cohort (2015) [34] + 44 = 63 (6.8) = 38 (12) = 22.5 (2.4) = 30 cohort (2015) [34] + 44 = 63 (6.8) = 38 (12) = 22.5 (2.4	tekkeholas (2013) [13] Prospective cohort Woo (2012) [29] Prospective cohort Woo (2012) [29] Prospective cohort Min (2012) [21] M Woo (2011) [30] Bardoli (2017) [31] 11 70.5 (102) 45.5 (153) 25.6 (53) Bardoli (2017) [31] 11 70.5 (102) 45.5 (153) 25.6 (53) Bardoli (2017) [31] 11 70.5 (102) 45.5 (153) 22.6 (57) Bardoli (2017) [31] 11 70.5 (102) 45.5 (153) 22.6 (57) Boxlexr (2019) [32] 32 6 66.2 (11.5) 43 (18.8) 20.82 (65) Craztze (2017) [35] Boxlexr (2016) [36] 17 67 (10.8) 44.1 (14.3) 22.8 (4.4) BH4II = Benign Prostatic Hyperplasia Impact Index; [5]D = cjaculatory dysfunction; IPS = Inter PVR = postvoid residual volume: Qmax = maximum flow rate; QoI = quality of life; SD = standa interview study Infection, bacterial prostatiis, cystolithiasis, extracke (2017) [35] Infection, bacterial prostatiis, cystolithiasis, extracke (2017) [35] Infection, BFW were unresponsive to oral therapy PV = 100 mL IPS < 12.PVR = 350 nl, p.PK < 350 ml, p.FK < 350 ml, p	$\frac{1}{1} \frac{1}{1} \frac{1}$		-	McNicholas (2013) [13]	102	68 (10.0)	48 (21)	23.2 (6.1)	÷	51/5	-	CLUM	
Weo (2012) [29] Prospective cohort him (2017) [31] 11 70.5 (10.2) 45.5 (15.1) 25.6 (5.3) him (2019) [32] 32 67 (7) 50 (7) 19.3 (2.4) Sievert (2019) [33] 86 66.2 (11.5) 43 (18.8) 20.82 (6.5) Gratzke (2017) [35] mardoli (2017) [31] 11 70.5 (10.2) 45.5 (15.1) 25.6 (5.3) Sonksen (2015) [34] 44 63 (6.8) 38 (12) 22 (5.7) Bozkurt (2016) [36] 17 67 (10.8) 44.1 (14.3) 22.8 (4.4) BHII = Benign Prospective study bievert (2019) [32] Prospective study Dorksen (2015) [34] Nonblinded RCT Age >50 yr. PSS >12, positive response to Models are transported response to Softwart (2016) [36] Retrospective study LUTS scondary to BPH were unresponsive to rol al therapy PV >100 nl. IPS <12, PVR >350 ml, qmax, sto mle, PVR <350 ml,	Weo (2012) [29] Prospective cohrt Min (2017) [31] 11 1 70,5 (102) Bardoli (2017) [31] 11 1 70,5 (102) Bardoli (2017) [31] 11 1 70,5 (102) Bardoli (2017) [31] 11 1 70,5 (102) Sievert (2019) [32] 86 662 (2115) 38 (12) 22 (5.7) Sonksen (2015) [34] 44 63 (6.8) Gratzke (2017) [35] bozkurt (2016) [36] 17 67 (10.8) 44.1 (14.3) 22.8 (4.4) BPUR = postvaid residual volume; Qmax = maximum flow rate; Qol = quality of life; SD = stands Months metrospective study Breven (2019) [32] Prospective study and ker (2019) [33] Prospective study Breven (2019) [34] Nohlinded RT Age >50 yr, IPSS -12, positive response to Sistructive median lobe, retention, providi residual volume; Qmax = maximum flow rate; Qol = quality of life; SD = stands for the ray of the ray of the ray of the response to comorbidities PV > 100 mill PSS <12, PVR >300 mil, PVR (-350 mil, PV Sistructive redian lobe, retention, providi residual robater, prostatic surgery, infection, hindra di agarge, infection, brevise study Diffection, batterial prostatic surgery, infection, PV > 100 mill PSS <12, PVR >300 mil, formati surgery, infection, PV > 100 mill post surgery, infection, P	$ \begin{array}{c} Woo (2012) [29] \\ Woo (2012) [30] \\ Hardoli (2017) [31] \\ Hardoli (2016) [36] \\ 17 $			Woo (2012) [29]	64	67 (7.3)	51 (23)	22.6 (5.4)	E	PVR	F	SHIM	
Weo (2012) [29] Prospective cohort Bardoli (2017) [31] 11 70.5 (10.2) Sievert (2019) [32] 32 67 (7) Sievert (2019) [33] 86 66 22 (15) Sonksen (2015) [34] 44 63 (6.8) aradoli (2017) [31] Retrospective study im (2019) [32] Retrospective study im (2019) [32] Retrospective study im (2019) [32] Retrospective study im (2019) [33] Prospective study intervent (2015) [34] Nonblinded RT Age ≥ 50 yr, IPSS >12, positive response to stratzke (2017) [35] conzurt (2016) [36] Retrospective study intervent (2015) [34] Nonblinded RT Age ≥ 50 yr, IPSS >12, positive response to conzult (2016) [36] Retrospective study LUTS secondary to BPH were unresponsive to conzult (2016) [36] Retrospective study LUTS secondary to BPH were unresponsive to conzult (2016) [36] Retrospective study LUTS secondary to BPH were unresponsive to conzult (2016) [36] Retrospective study LUTS secondary to BPH were unresponsive to conzult (2016) [36] Retrospective study LUTS secondary to BPH were unresponsive to conzult (2016) [36] Retrospective study LUTS secondary to BPH were unresponsive to constructive median lobe, retroined, reproduce repetic surgery or irradiation, PSA > 100 m[M, IPSS <12, PVR >350 m], Qmax >150 m], SPA > 4ng m], obstructive median lobe, retroined nobe, retroined, reproduce repetic surgery or irradiation, PSA > 100 m[M, IPSS <12, PVR >350 m], Qmax >150 m], SPA > 4ng m], obstructive median lobe, retroined nobe, retroi	Web (2012) [29] Prospective cohort hin (2012) [14] Web (2011) [31] Retrospective study im (2019) [32] Retrospective study im (2019) [33] Prospective study im (2019) [33] Retrospective study in (2019) [33] Retrospective study im (2019) [33] Retrospective study in (2019) [34] Nonblinde RCT Age ≥ 50 yr. IPS >12, positive response to MSHQ-EjD, Qmax ≤ 15 ml/s, P/R < 350 ml, PV ≤ 60 ml, SHIM > 6 Karzke (2017) [35] iarzke (2017) [35] iar	$ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	IcNicholas (2013) [13]	Prospective cohort	Chin (2012) [14]					- ⁸⁰		37		
$\frac{1}{10} \frac{1}{10} \frac$	$\frac{1}{10} \frac{1}{10} \frac$	$\frac{1}{10} \frac{1}{10} \frac$	Vec (2012) [20]	Decene stime cohort	Woo (2011) [30]					E co-	т	ŧ		
hin (2012) [14] Wo (2011) [30] ardoli (2017) [31] Retrospective study im (2019) [32] Prospective study im (2019) [33] Prospective study im (2019) [34] Nonblinded RCT Age >50 yr, IPSS >12, positive response to MSHQ-EjD, Qmax <15 m/s, P/R <350 m, P/V ≤ 60 mi, SHIM >6 PV >100 ml, IPSS <12, P/R >350 ml, P/V ≤ 60 ml, SHIM >6 PV >100 ml, IPSS <12, P/R >350 ml, P/V ≤ 10 ml, P/S >100 ml, IPSS <12, P/R >350 ml, P/V ≤ 10 ml, P/S >100 ml, IPSS <12, P/R >350 ml, P/V ≤ 10 ml, IPSS <12, P/R >350 ml, P/V ≤ 10 ml, P/S >100 ml, IPSS <12, P/R >350 ml, P/V ≤ 10 ml, P/S >100 ml, IPSS <12, P/R >350 ml, P/V ≤ 10 ml, P/S >100 ml, IPSS <12, P/R >350 ml, P/V ≥ 10 ml, IPSS <12, P/R >350 ml, P/V ≤ 10 ml, P/R >100 ml, IPSS <12, P/R >350 ml, P/V ≥ 10 ml, P/S >10 ml, IPSS <12, P/R > 350 ml, P/V ≥ 10 ml, IPSS <12, P/R > 350 ml, P/V ≥ 10 ml, IPSS <12, P/R > 350 ml, P/V ≥ 10 ml, IPSS <12, P/R > 350 ml, P/V ≥ 10 ml, P/S >10 ml, IPSS <12, P/R > 350 ml, P/V ≥ 10 ml, IPSS <12, P/R > 350 ml, P/V ≥ 10 ml, IPSS <12, P/R > 350 ml, P/V ≥ 10 ml, IPSS <12, P/R > 350 ml, P/V ≥ 10 ml, P/S >10 ml, IPSS <12, P/R > 350 ml, P/V ≥ 10 ml, IPSS <12, P/R > 350 ml, P/V ≥ 10 ml, IPSS <12, P/R > 350 ml, P/V ≥ 10 ml, IPSS <12, P/R > 30	hin (2012) [14] Wo (2011) [30] ardoli (2017) [31] Retrospective study lim (2018) [32] Retrospective study levert (2019) [33] Retrospective study levert (2019) [34] Nonblinded RCT Age \geq 50 yr, IPSS >12, positive response to MSHQ-EjD, Qmax \leq 15 m/s, PVR $<$ 350 ml, PV \leq 60 ml, SHIM >6 Retrospective study LUTS secondary to BPH were unresponsive or ratzke (2017) [35] Retrospective study LUTS secondary to BPH were unresponsive or rat herapy LUTS seco	$\frac{1}{12} \frac{1}{12} \frac{1}{13} \frac$	voo (2012) [29]	Prospective conort	Bardoli (2017) [31]		70.5 (10.2)					₽ 2		T
Sonksen (2015) [34] 44 63 (6.8) 38 (12) 22 (5.7) Gratzke (2017) [35] Cartzke (2017) [36] 17 67 (10.8) 44.1 (14.3) 22.8 (4.4) Cartzke (2017) [37] Prospectively study Descent (2016) [36] 17 67 (10.8) 44.1 (14.3) 22.8 (4.4) Cartzke (2017) [35] Cartzke (2017) [36] Cartzke (2017) [37] Cartzke (2017) [38] Cartzke (2017) [38] Cartzke (2017) [39] Ca	Nov (2011) [30] Sonksen (2015) [34] 44 63 (6.8) 38 (12) 22 (5.7) Gratzke (2017) [35] BrHI = Benign Prostatic Hyperplasia Impact Index; EjD = ejaculatory dysfunction; IPSS = Inter PVR = postvoid residual volume; Qmax = maximum flow rate; QoI = quality of life; SD = standa onksen (2015) [34] Nonblinded RCT Age ≥ 50 yr, IPSS > 12, positive response to MSHQ-EjD, Qmax $\leq ISm/s$, PVR < 350 ml, PV ≤ 60 ml, SHIM > 6 interprotective study LUTS secondary to BPH were unresponsive to oral therapy PVS > 100 ml PSS <12, PVR > 350 ml, Qmax ≥ 15 ml/s, PXA > 4350 ml, Qmax ≥ 15 ml/s, PXA > 4350 ml, Norbitices PVS > 100 ml, IPSS <12, PVR > 350 ml, Qmax ≥ 15 ml/s, PXA > 4350 ml, Norbitices PVS > 100 ml, IPSS <12, PVR > 350 ml, Qmax ≥ 15 ml/s, PXA > 4350 ml, Qmax ≥ 15 ml/s, PXA > 400 ml, obtructive median lobe, neurogenic bladder, prostatic surgery, infection, PMO the median lobe, PMO the pMO the	$ \begin{array}{c} \text{Sonksen} (2015) [34] & 44 & 63 (6.8) \\ \text{arcdia} (2017) [35] \\ \text{arcdia} (2017) [36] \\ arc$			Kim (2019) [32]	32	67 (7)	50 (7)	19.3 (2.4)	₽ 40-		A A		
Novo (2011) [30] aradoli (2017) [31] Retrospective study ievert (2016) [32] Retrospective study ievert (2019) [32] Retrospective study onksen (2015) [34] Nonblinded RCT Age ≥ 50 yr, IPSS >12, positive response to MSHQ-EJD, Qmax ≤ 15 ml/s, PVR < 350 ml, PV ≤ 60 ml, SHM > 6 $P' > 100$ ml, IPSS < 12 , PVR > 350 ml, Qmax ≥ 15 ml/s, PVR < 350 ml, Qmax, ≤ 15 ml/s, PVR < 350 ml, Qmax ≥ 15 ml/s, PSA $> 4ng/ml,$ obstructive median lobe, neuropatic badder cancer, severe comorbidities $P' > 100$ ml, IPSS < 12 , PVR > 350 ml, Qmax ≥ 15 ml/s, PSA $> 4ng/ml,$ obstructive median lobe, neuropatic badder proteatic	Novo (2011) [30] ardoli (2017) [31] Retrospective study im (2019) [32] Retrospective study inic (2019) [32] Retrospective study inic (2019) [32] Retrospective study inic (2019) [33] Prospective study onksen (2015) [34] Nonblinded RCT Age >50 yr, IPSS >12, positive response to MSHQ-EjD, Qmax $\leq 15 m/s$, PVR $< 350 ml$, PV $\leq 60 ml$, SHIM >6 $VR = postvoid residual volume; Qmax = maximum flow rate; Qol = quality of life; SD = standal or laser procedure, pelvic surgery or irradiation, PSA \geq 10 ng/ml, prostatic or bladder cancer, severecomorbiditiesVR = postvoid restores to the study to BPH were unresponsive to rate ray VR = postvoid restores to the response to the res$	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	'hin (2012) [14]				66,2 (11,5)		20.82 (6.5)	20- T I		T ŭ 1-	T T	
ardoli (2017) [31]Retrospective studyBozkurt (2016) [36]1767 (10.8)44.1 (14.3)22.8 (4.4)Im (2019) [32]Retrospective studyImpact Index; EjD = ejaculatory dysfunction; IESS = Inter PVR = postvoid residual volume; Qmax = maximum flow rate; Qol = quality of life; SD = standaImpact Index; EjD = ejaculatory dysfunction; IESS = Inter PVR = postvoid residual volume; Qmax = maximum flow rate; Qol = quality of life; SD = standaonksen (2015) [34]Nonblinded RCTAge >50 yr, IPSS >12, positive response to MSHQ-EjD, Qmax <15 ml/s, PVR <350 ml, PV <60 ml, SHIM >6Infection, bacterial prostatitis, cystolithiasis, obstructive median lobe, retention, previous TURP or later procedure, pelvic surgery or irratition, PSA ≥10 ng/ml, prostate or bladder cancer, severe comorbiditiesInfection, bacterial prostatic surgery or irratition, PSA ≥10 ng/ml, postate or bladder, prostatic surgery or irratition, PSA ≥10 ng/ml, obstructive median lobe, returgence in bladder, prostatic surgery, infection, PSA ≥10 ng/ml, obstructive median lobe, returgence in bladder, prostatic surgery, infection, PSA ≥10 ng/ml, obstructive median lobe, returgence in bladder, prostatic surgery, infection, PSA ≥10 ng/ml, obstructive median lobe, returgence in bladder, prostatic surgery, infection, PSA ≥10 ng/ml, obstructive median lobe, returgence in bladder, prostatic surgery, infection, PSA ≥10 ng/ml, obstructive median lobe, returgence in bladder, prostatic surgery, infection,Image: PSA = PS	ardoli (2017) [31]Retrospective studyBozkurt (2016) [36]1767 (10.8)44.1 (14.3)22.8 (4.4)Im (2019) [32]Retrospective studyBPHII = Benign Prostatic Hyperplasia Impact Index; EjD = ejaculatory dysfunction; IFSS = Inte PVR = postvoid residual volume; Qmax = maximum flow rate; Qol = quality of life; SD = standa121518212424MonthsMonthsRetrospective studyInfection, bacterial prostatics, cystolithiasis, or laser procedure, pelvic surgery or irradiation, PSA ≥10 ng/m, prostate or bladder cancer, sever combridities12369121518212424MonthsMonthsMonthsMonths1213121214121518212414MonthsMonthsMonthsMonths12131213121312141214MonthsMonthsMonthsMonths12131415181415181414141	ardoli (2017) [31]Retrospective studyBozkurt (2016) [36]1767 (10.8)44.1 (14.3)22.8 (4.4)Im (2019) [32]Retrospective studyBPHII = Benign Prostatic Hyperplasia Impact Index; EjD = ejaculatory dysfunction; IPSS = Inte PVR = postvoid residual volume; Qmax = maximum flow rate; Qol = quality of life; SD = standa10onksen (2015) [34]Nonblinded RCTAge >50 yr, IPSS >12, positive response to MSHQ-EjD, Qmax <15 m/s, PVR <350 m, PV <60 ml, SHM >6Infection, bacterial prostatic, cystolithiasis, obstructive median lobe, retention, previous TURP or lacer procedure, pelvic surgery or irradiation, PSA >10 ng/ml, prostatic or bladder cancer, severe comorbiditiesInfection, bacterial prostatic, surgery, infection, pelvic surgery, infection, bladder diseases24 24 240Junt Secondary to BPH were unresponsive to oral therapyPV >100 ml, IPSS <12, PVR >350 ml, Qmax nic diseases24 24 24240Junt Secondary to BPH were unresponsive to oral therapyPV >100 ml, IPSS <12, PVR >350 ml, Qmax nic diseases24 24 24240Junt Secondary to BPH were unresponsive to oral therapyPV >100 ml, IPSS <12, PVR >350 ml, Qmax nic diseases24 24 24240Junt Secondary to BPH were unresponsive to no ladder diseasesPV >100 ml, IPSS <12, PVR >350 ml, Qmax nic diseases24 24 24100Junt Secondary to BPH were unresponsive to no ladder diseasesPV >100 ml, IPSS <12, PVR >350 ml, Qmax nic diseases24 2410Junt Secondary to BPH were unresponsive to no diadder diseasesPV >100 ml, IPSS <12, PVR >350 m			Sonksen (2015) [34]	44	63 (6.8)	38 (12)	22 (5.7)	Did J				
$\frac{1}{10000000000000000000000000000000000$	$\frac{1}{1}$ $\frac{1}$	$\frac{1}{1} = \frac{1}{1} = \frac{1}$			Gratzke (2017) [35]					E º				
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$\begin{array}{c} BPHII = Benign \ Prostatic Hyperplasia \ Impact Index; EjD = ejaculatory \ dysfunction; IPSS = Interplace \ PVR = postvoid \ residual \ volume; Qmax = maximum \ flow \ rate; Qol = quality \ of \ life; SD = standa \ PVR = postvoid \ residual \ volume; Qmax = maximum \ flow \ rate; Qol = quality \ of \ life; SD = standa \ Obstructive \ median \ lobe, \ retention, \ previous \ TURP \ or \ lastructure \ median \ lobe, \ retention, \ previous \ TURP \ or \ ratzke \ (2017) \ [35] \ ozclurt \ (2016) \ [36] \ Retrospective \ study \ LUTS \ secondary \ to \ BPH \ were \ unresponsive \ or \ ratzke \ (2017) \ [35] \ ozclurt \ (2016) \ [36] \ Retrospective \ study \ LUTS \ secondary \ to \ BPH \ were \ unresponsive \ or \ ratzke \ (2017) \ [35] \ ozclurt \ (2016) \ [36] \ Retrospective \ study \ LUTS \ secondary \ to \ BPH \ were \ unresponsive \ or \ ratzke \ (2017) \ [35] \ ozclurt \ (2016) \ [36] \ Retrospective \ study \ LUTS \ secondary \ to \ BPH \ were \ unresponsive \ or \ ratzke \ (2017) \ [35] \ ozclurt \ (2016) \ [36] \ Retrospective \ study \ LUTS \ secondary \ to \ BPH \ were \ unresponsive \ to \ ratke \ rat$	$\frac{1}{10} = \frac{1}{10} $	ardoli (2017) [31]	Retrospective study	Bozkurt (2016) [36]	17	67 (10.8)	44.1 (14.3)	22.8 (4.4)	ਛ -20 – ³		21 24 2 3	6 9 1 <mark>2 15 18 21</mark>	1 2 <mark>4</mark>
$\frac{ \mathbf{M} ^{2}(219) ^{32} }{ \mathbf{k} ^{2} ^{2} ^{2} ^{2} ^{2} ^{2} ^{2} ^{2$	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	Im (2019) [32] evert (2019) [33]Retrospective study Prospectively studyPVR - postvoid residual volume; Qmax = maximum flow rate; Qol = quality of life; SD = standaonksen (2015) [34]Nonblinded RCTAge ≥ 50 yr, IPSS >12, positive response to MSHQ-EjD, Qmax ≤ 15 ml/s, PVR < 350 ml, PV ≤ 60 ml, SHIM > 6 Infection, bacterial prostatitis, cystolithiasis, rotacer procedure, pelvic surgery or irradiation, PSA ≥ 10 ng/ml, prostate or bladder cancer, severe comorbiditiesInfection, bacterial prostatitis, cystolithiasis, rotacer procedure, pelvic surgery or irradiation, PSA ≥ 10 ng/ml, prostate or bladder cancer, severe comorbiditiesImportance of the pelvic surgery or irradiation, PSA ≥ 10 ng/ml, prostate or bladder cancer, severe comorbiditiesImportance of the pelvic surgery or irradiation, PSA ≥ 10 ng/ml, prostate or bladder cancer, severe comorbiditiesImportance of the pelvic surgery or irradiation, PSA ≥ 10 ng/ml, prostate or bladder cancer, severe comorbiditiesImportance of the pelvic surgery or irradiation, PSA ≥ 10 ng/ml, prostate or bladder, prostatic surgery, infection, bladder diseasesImportance of the pelvic surgery or irradiation, PSA ≥ 10 ng/ml, obstructive median lobe, neurogenic bladder, prostatic surgery, infection, bladder diseasesImportance of the pelvic surgery infection, bladder diseaseImportance of the pelvic surgery infection, to the pelvic surgery infection, bladder diseaseImportance of the pelvic surgery infection, to the pelvic surgery infection, to the pelvic surgery infection, bladder diseaseImportance of the pelvic surgery infection, to the pelvic surg								W to	Months	-1	Months	1
PVR = postvoid residual volume; Qmax = maximum flow rate; Qol = quality of life; SD = standa onksen (2015) [34] Nonblinded RCT Age ≥ 50 yr, IPSS >12, positive response to MSHQ-EjD, Qmax ≤ 15 m//s, PVR < 350 ml, PV ≤ 60 ml, SHIM > 6 50 yr, IPSS ≥ 12 , positive response to matzke (2017) [35] 51 respective study LUTS secondary to BPH were unresponsive to oral therapy 15 PV >100 ml, IPSS < 12 , PVR > 350 ml, Qmax 12 24 > 15 ml/s, PSA ≥ 4 ng/ml, obstructive median lobe, neurogenic bladder, prostatic surgery, infection, 15 ml/s, PSA ≥ 4 ng/ml, obstructive median lobe, neurogenic bladder, prostatic surgery, infection,	$\frac{PVR = postvoid residual volume; Qmax = maximum flow rate; Qol = quality of life; SD = standa}{ponksen (2015) [34]}$ Nonblinded RCT $Age \geq 50 \text{ yr, IPSS > 12, positive response to} MSHQ-EjD, Qmax \leq 15 ml/s, PVR < 350 ml, PV \\ \leq 60 ml, SHIM > 6 \\ \frac{1}{2} 0 \text{ log/ml, prostate or bladder cancer, severe comorbidities}}$ $PV > 100 ml, IPSS < 12, PVR > 350 ml, Qmax \\ > 15 ml/s, PSA > 4 ng/ml, obstructive median lobe, neurogenic bladder, prostatic surgery, infection, heater aig neurogenic bladder, prostatic surgery, infection, heater aig neurogenic bladder is as est.$ $PV > 100 ml, IPSS < 12, PVR > 350 ml, Qmax \\ > 15 ml/s, PSA > 4 ng/ml, obstructive median lobe, neurogenic bladder, prostatic surgery, infection, heater aig neurogenic bladder is as est.$	ever (2019) [33] Prospectively study PVR = postVoid residual volume; Qmax = maxmum flow rate; QoI = quality of life; SD = standal on ksen (2015) [34] Nonblinded RCT $Age \ge 50$ yr, IPSS >12, positive response to $MSHQ-EjD, Qmax \le 15$ ml/s, PVR <350 ml, PV ≤ 60 ml, SHIM >6 $bfructive median lobe, retention, previous TURPor laser procedure, pelvic surgery or irradiation,PX = 100 m/m, prostate or bladder cancer, severcomorbidities PX = 100 m/m, prostate or bladder cancer, severcomorbidities PX = 100 m/m, prostate or bladder cancer, severcomorbidities PX = 100 m/m, prostate or bladder, prostatic surgery, infection,bladder diseases PX = 100 m/m, prostate surgery, infection,bladder diseases PX = 100 m/m m/m, prostate surgery, infection, bladder diseases PX = 100 m/m m/m, prostate surgery, infection, bladder diseases PX = 100 m/m m/m m/m m/m m/m m/m m/m m/m m/m m/$	im (2019) [32]	Retrospective study	-					-40 -				ne;
$\begin{array}{c} \text{Mister}(2015)[34] \\ \text{Mister}(2015)[35] \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ \text{Retrospective study} \\ \text{LUTS secondary to BPH were unresponsive to oral therapy \\ \text{Mister}(2016)[36] \\ \text{Retrospective study} \\ Retrospec$	$\frac{1}{MSHQ-EjD}, Qmax \le 15 \text{ m/s}, \text{ PVR } < 350 $	$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$			PVR = postvoid residual v	olume; Qma	x = maximum flow ra	te; Qol = quality of	ne; SD = standa					
$\frac{1}{100} \frac{1}{100} \frac{1}$	$\frac{12}{MSHQ-EjD}, Qmax \le 15 ml/s, PVR < 350 ml, PV \\ \le 60 ml, SHIM > 6$ $\frac{12}{MSHQ-EjD}, Qmax \le 15 ml/s, PVR < 350 ml, PV \\ \le 60 ml, SHIM > 6$ $\frac{12}{MSHQ-EjD}, Qmax \le 15 ml/s, PVR < 350 ml, PV \\ = combridities$ $\frac{12}{ratzke} (2017) [35]$ $\frac{12}{ratzke} (2017) [36]$ $\frac{12}{ratzk$	$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$								G	MSHQ-EID	н	MSHQ-Bother	
Gratzke (2017) [35] Gratzke (2017) [35] Bozkurt (2016) [36] Retrospective study LUTS secondary to BPH were unresponsive to or laker procedure, pelvice under an lobe, recention, provide comorbidities 24 bit bit bit bit bit bit bit bit bit bit	$ \frac{1}{2} 1$	$\frac{1}{600 \text{ ml}, \text{SHM} \times (530 \text{ ml}, \text{FW} \times (330 \text{ ml}, \text{FW})}{(500 \text{ ml}, \text{SHM} \times (530 \text{ ml}, \text{SH})} = \frac{1}{100 \text{ ml}, \text{prostate or bladder cancer, severe comorbidities}}{(500 \text{ ml}, \text{SHM} \times (530 \text{ ml}, \text{SH})} = \frac{1}{100 \text{ ml}, \text{prostate or bladder cancer, severe comorbidities}}}{(500 \text{ ml}, \text{SHM} \times (530 \text{ ml}, \text{SH}))} = \frac{1}{100 \text{ ml}, \text{prostate or bladder cancer, severe comorbidities}}}{(500 \text{ ml}, \text{SHM} \times (530 \text{ ml}, \text{SH}))} = \frac{1}{100 \text{ ml}, \text{prostate or bladder cancer, severe comorbidities}}}{(500 \text{ ml}, \text{SHM} \times (530 \text{ ml}, \text{SH}))} = \frac{1}{100 \text{ ml}, \text{prostate or bladder cancer, severe comorbidities}}}{(500 \text{ ml}, \text{ml}, \text{secondary to BPH were unresponsive to or all therapy}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder diseases}}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder diseases}}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder diseases}}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder diseases}}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}} = \frac{1}{100 \text{ ml}, \text{prostate surgery, infection, bladder disease}} = \frac{1}{100 $	onksen (2015) [34]	Nonblinded RCT										
Sratzke (2017) [35] Sozkurt (2016) [36] Retrospective study LUTS secondary to BPH were unresponsive to oral therapy by 100 ml, IPSS <12, PVR >350 ml, Qmax 12 >15 ml/s, PSA >4 ng/ml, obstructive median lobe, neurogenic bladder, prostatic surgery, infection, neurogenic bladder, prostatic surgery,	PSA ≥10 ng/ml, prostate or bladder cancer, severe comorbidities 24 Sozkurt (2016) [36] Retrospective study LUTS secondary to BPH were unresponsive to oral therapy 0, 15 ml/s, PSA >4 ng/ml, obstructive median lobe, neurogenic bladder, prostatic surgery, infection, bladder, fire a see	$PSA \ge 10 \text{ ng/ml}, \text{ prostate or bladder cancer, severe comorbidities}} \\ pratzke (2017) [35] \\ ozkurt (2016) [36] \\ Retrospective study \\ utrs secondary to BPH were unresponsive to oral therapy \\ oral therapy \\ bladder diseases \\ bladder diseases \\ bladder disease \\ comorbidities \\ bladder disease \\ comorbidities \\ comorbiditie$				<350 ml, PV				+ T		-		
Gratzke (2017) [35] Biozkurt (2016) [36] Retrospective study LUTS secondary to BPH were unresponsive to oral therapy by 15 ml/s, PSA >4 ng/ml, obstructive median lobe, neurogenic bladder, prostatic surgery, infection,	Comorbidities co	ratzke (2017) [35] ratzke (2017) [35] ratzke (2017) [35] ratzke (2017) [35] ratzke (2017) [35] ratzke (2017) [35] ratzke (2017) [36] ratzke			≤oo mi, shiw >o					E 2.0−	т	men		
ozkurt (2016) [36] Retrospective study LUTS secondary to BPH were unresponsive to oral therapy PV >100 ml, IPSS <12, PVR >350 ml, Qmax 12 5 nl, o g 0.5 neurogenic bladder, prostatic surgery, infection, neurogenic bladder, prostatic surgery, infection,	ozkurt (2016) [36] Retrospective study LUTS secondary to BPH were unresponsive to oral therapy PV >100 ml, IPSS <12, PVR >350 ml, Qmax 12 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	pozkurt (2016) [36] Retrospective study LUTS secondary to BPH were unresponsive to oral therapy PV >100 ml, IPSS <12, PVR >350 ml, Qmax 12 >15 ml/s, PSA >4 ng/ml, obstructive median lobe, neurogenic bladder, prostatic surgery, infection, bladder diseases						are of philuder curren, s	creic .	ā 1.5-	T	T 8 1.0 T	Т	т
oral therapy >15 ml/s, PSA >4 ng/ml, obstructive median lobe, neurogenic bladder, prostatic surgery, infection,	oral therapy >15 ml/s, PSA >4 ng/ml, obstructive median lobe, neurogenic bladder, prostatic surgery, infection, bladder, die asses	oral therapy >15 ml/s, PSA >4 ng/ml, obstructive median lobe, neurogenic bladder, prostatic surgery, infection, bladder diseases 0 3 6 9 12 15 18 21 24 0 3 6 9	ratzke (2017) [35]						24	du du		Judu 🗸		
neurogenic bladder, prostatic surgery, infection,	neurogenic bladder, prostatic surgery, infection,	neurogenic bladder, prostatic surgery, infection, bladder diseases 0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 12 14 10 10 10 10 10 10 10 10 10 10 10 10 10	ozkurt (2016) [36]	Retrospective study		esponsive to				. <u>s</u> 1.0-		0.5-	1	
	bladder diseases 0.0	bladder diseases 0.0			oral therapy			,		e 0.5−	1	Mea	1	
		0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 12 15 18 21 24 0 3 6 9 12 15 18 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12 15 18 12 12						rostatic surgery, infecti	on,	0.0				

Patients`selection

- Inclusion criteria
 - Refractory LUTS with BPO.
 - Prostate volume: 30 ~ 80 cc
 - Want to preserve sexual function.
 - Concerned about complications of TURP or laser therapy.
 - Want to be more rapid return to daily life.

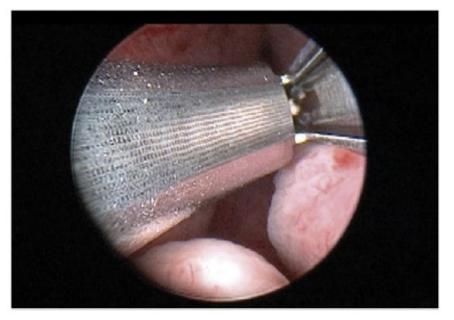
Patients` selection

- Exclusion criteria
 - Previous prostate surgery
 - Infection
 - Obstructive median lobe
 - High bladder neck

The number of PUL implant

Table 4 - Operative details and complications.

Publication	Local anesthetic	Operative time (min), mean (SD)	Implants, mean (range)	Postoperative catheter	Early postoperative complications (0–3 mo)					Total complications in patients during 3 mo	Progression to TURP at 24 mo	Progression to TURP at 12 mo
					Dysuria	Hematuria	Pelvic pain	UTI	Incontinence			
Roehrborn (2013) [20]	Most patients	66 (24)	4.9 (2-11)	72/140 (51.4)	48/140 (34,3)	34/140 (24.3)	25/140 (17.9)	4/140 (2.86)	5/140 (3.57)	100/140 (87.1)	5/140 (3.57)	2/140 (1.43)
Roehrborn (2015) [21]												
Roehrborn (2015) [22]												
Roehrborn (2017) [23]												
McVary (2014) [24]												
Rukstalis (2016) [26]	46/53 (86.8)	53 (15)	4.4 (2-8)	26/53 (49.1)	19/53 (3.58)	14/53 (2.64)	11/53 (2.08)	1/53 (1.89)	1/53 (1.89)	41/53 (77.4)	4/53 (7.55)	1/53 (1.89)
Cantwell (2014) [27]												
Rukstalis (2019) [25]	6/45 (13.3)	NA	6.3 (SD 1.6)	36/45 (80)	Most frequent	Most frequent	NA	NA	NA	NA	NA	NA
Shore (2014) [28]	51/51 (100)	52 (22)	3.7 (2-6)	10/51 (19.6)	27/51 (52.9)	38/51 (74.5)	8/51 (15.7)	NA	2/51 (3.92)	47/51 (92)	NA	NA
McNicholas (2013) [13]	17/102 (16.7)	58 (16)	4.5 (2-9)	54/102 (52.9)	25/102 (24.5)	16/102 (15.7)	NA	1/102 (0.98)	NA	NA	NA	4/102 (3.92)
Woo (2012) [29]	26/64 (40.6)	NA	4 (2-9)	34/64 (53.1)	NA	NA	NA	7/64 (10.9)	5/64 (7.81)	NA	12/64 (18.8)	4/64 (6.25)
Chin (2012) [14]												
Woo (2011) [30]												
Bardoli (2017) [31]	2/11 (18.2)	8.5 (1.7)	4 (2-6)	NA	NA	NA	NA	NA	NA	NA	NA	NA
Kim (2019) [32]	32/32 (100)	NA	2.2 (NA)	NA	NA	Most frequent	0/32 (0)	NA	0/32 (0)	NA	NA	0/32 (0)
Sievert (2019) [33]	24/86 (27.9)	57 (12)	3.8 (2-7)	86/86 (100)	12/86	(14.0) ^a	3/86 (3.49)	NA	NA	NA	9/86 ((10.5) ^a
Sonksen (2015) [34]	1/44 (2.27)	55 (17)	4.7 (2-6)	44/44 (100)	4/44 (9.09)	17/44 (38.6)	23/44 (52.3)	3/44 (6.82)	1/44 (2.27)	37/44 (84.1)	6/44 (13.6)	3/44 (6.82)
Gratzke (2017) [35]												
Bozkurt (2016) [36]	5/17 (29.4)	29.1 (11.6)	3.71 (2-7)	0/17 (0)	NA	NA	NA	NA	NA	NA	NA	0/17 (0)


Data are shown as frequency (%) unless indicated otherwise.

^a Sum of two numbers.

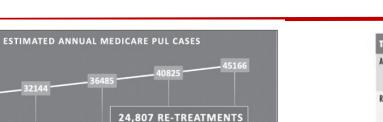
About 1 implant per 10cc of prostate volume.

- The prostatic urethra should be assessed from the viewpoint of the verumontanum.
- For larger prostates, the next implants should be placed at the distal-most location. With the verumontanum in view, angle the device tip to the anterior level of the initial implants.

- The amount of opening achieved in the prostatic urethra is thus dictated by the amount of compression applied by the urologist with the delivery device tip.
 - The length of monofilament delivered at any one location is self-adjusted in situ by the tension.
 - It is possible for the urologist to first test the opening effect of the urethra cystoscopically to choose the best location for the implant before deployment.

Eur Urol 2013;64:292–299

Re-treatment after PUL


TABLE 1. Adverse events over 5 year contraction	urse of study	7				
Time period [months]	0-3	4-12	13-24	25-36	37-48	49-60
Total available subjects	140	139	130	118	108	96
Total subject-months (SM)	413.6	1210.3	1463.8	1324.9	1186.6	1056.3
Related adverse events [total events]	162	15	6	4	2	1
Related adverse events [subjects]	100	12	6	2	2	1
% SM with adverse event per total SM:						
Abdominal pain	0.3%					
Bladder spasm	0.3%	0.09%				
Chills (rigors)				< 0.01%		
Diarrhea	0.2%					
Dizziness	0.2%					
Fever (pyrexia)	0.06%					
Vomiting	0.02%					
Hypotension	0.04%					
Orchitis/epididymo-orchitis	0.3%					
Painful erection	0.2%					
Urinary retention	0.4%					
Urethral stenosis (stricture)	< 0.01%	< 0.01%				
Prostatitis	0.4%	< 0.01%	0.06%			
Urinary tract infection	0.1%	0.03%	0.03%	0.03%		
Pelvic pain	6%	1%				
Hematuria	4%	0.2%	0.3%		0.07%	0.07%
Dysuria	9%	1%	1%	1%		
Urinary urge incontinence	3%	3%	2%	1%	1%	1%
Other	4%	3%	5%	4%	3%	3%

- Surgical re-treatment for failure to cure was 13.6% at 5 years.
- Removal of encrusted implants: 10/140 (7.14%).
- Often resolving within 2 weeks postoperatively.

Can J Urol 2017;24:8802-8813

Re-treatment after PUL

2019 2020 2021 2022 2023

Figure 1 Estimated total annual Medicare-reimburged prostatic urathral lift (PIII) cases

a

((

KEY MESSAGES

Despite an increasing number of patients expected to require surgical re-treatment after PUL, there is limited evidence and a lack of recommendations to guide the management of these patients.

■ HoLEP is associated with the strongest evidence to support its use after PUL.

PVP and RWT have no peer-reviewed evidence to support their use in the post-PUL setting.

There is no peer-reviewed evidence examining the durability, cost, or sexual impact of PUL retreatment modalities.

Benign prostatic hyperplasia surgical re-treatment after prostatic urethral lift

A narrativa raviaw

Author	Year	Country	Study type	n	Prostate size (cm ³)	Time from PUL (months)	LOS (days)	Complications (%)	EBL (mL)	ER visit (%)	PVR ∆ (mL)	AUASS A	Peak flow ∆ (mL/s)
Repeat PUL													
Roehrborn ²	2017	USA	RCT	6	NR	NR	NR	NR	NR	NR	NR	NR	NR
Page ⁶	2021	UK	Retrospective	57	NR	NR	NR	NR	NR	NR	NR	NR	NR
TURP													
Roehrborn ²	2017	USA	RCT	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Gratzke*	2016	Germany	RCT	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
wπ													
Gauhar ¹⁹	2022	Singapore	Retrospective	5	64	20	NR	0	NR	NR	NR	NR	NR
SP													
Pathak ³⁰	2022	USA	Retrospective	2	NR	NR	NR	NR	NR	NR	NR	NR	NR
RWT	-												
None													
HoLEP													
McAdoms ¹⁰	2017	USA	Retrospective	7	80	8	NR	0	59	NR	NR	NR	NR
Das ⁴	2022	USA	Retrospective	22	90	14.4	NR	18.2	NR	9.1	-124	-5	8.3
Duront ²³	2022	USA	Retrospective	24	NR	NR	NR	NR	NR	NR	NR	NR	NR
Assmus ⁷	2022	USA	Retrospective	22	104.8	NR	NR	7.7	NR	13.3	NR	-4.3	NR
David ¹⁴	2022	USA	Retrospective	1	84	NR	NR	0	NR	NR	NR	NR	NR
Parikh ²¹	2019	USA	Retrospective	3	NR	NR	NR	NR	NR	NR	NR	NR	NR
Igbal ²²	2018	UK	Retrospective	1	NR	0.25	NR	0	NR	NR	NR	NR	NR
TFL					0.040					Salaces.			
Smith ²⁴	2021	USA	Retrospective	1	198	24	1	NR	NR	NR	NR	-10	43.9
PVP													
None													
PAE													
Topping ³⁶	2017	UK	Retrospective	1	99	1	NR	NR	NR	NR	NR	-6	10

AUASS: American Urological Association Symptom Score; EBL: estimated blood loss; ER: emergency room; HoLEP: holmium laser enucleation of the prostate; LOS: length of stay; PAE: prostatic artery embolization; PUL: prostatic urethral lift; PVP: photo-selective vaporization of the prostate; PVR: postvoid residual; RCT: randomized controlled trial; RWT: robotic waterjet treatment; SP: simple prostatectomy; TFL: thulium fiber laser enucleation; TURP: transurethral resection of prostate; WVTT: water vapor thermal therapy. Can Urol Assoc J 2023;17:353–9.

- First case: 2015.12.
- A total of 59 cases from 2016 to 2023.
- Under general or local anesthesia.
- Exclusion criteria : high bladder neck & median lobe hypertrophy.
- Follow-up: 1, 3, 6, and 12 months after PUL.
 - Assessment : UFM and IPSS
 - Not evaluated sexual function questionnaire.

Table 1. Baseline characteristics of patients.

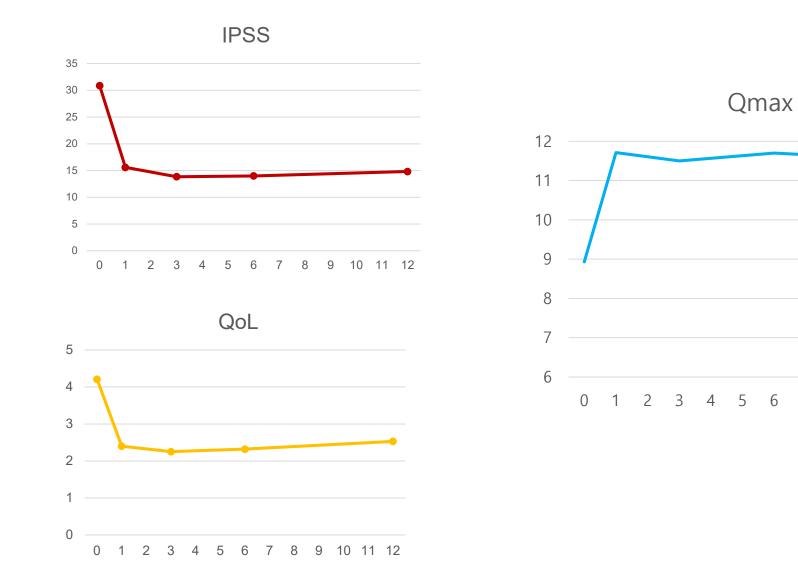

Characteristics	Mean ± SD
Age (yrs)	66.8 ± 8.9
PSA (ng/mL)	3.12 ± 2.79
Prostate volume (cc)	34.09 ± 13.00
IPSS	30.89 ± 3.30
QoL	4.21 ± 1.06
Qmax (mL/sec)	8.93 ± 4.18
Residual urine (cc)	57.93 ± 57.25
OP time (mins)	18.27 ± 9.47
PUL implants	2.12 ± 0.49

Table 2. outcome measures following PUL procedure.

	1 mo	3 mo	6 mo	12 mo
IPSS	15.60±4.36	13.85±4.30	14.00 ± 5.60	14.82±5.35
QoL	2.40±1.72	2.25±1.69	2.32±1.71	2.53±1.64
Qmax	11.71±5.03	11.50±4.85	11.70±4.58	11.45±4.72
PVR	47.85±40.81	45.45±43.58	31.91±24.56	36.12±32.98

8

9

7

10 11 12

Table 3. Postoperative complications after PUL procedure.

Complications	N (%)
Dysuria	9/59 (15.2)
Pelvic pain	7/59 (11.8)
Hematuria	2/59 (3.4)
UTI	0/59 (0)
Urinary incontinence	0/59 (0)
Urgency	10/59 (16.9)
Encrusted implant	4/59 (6.8)
Progression to TURP	12/59 (20.3)

Conclusions

Prostatic urethral lift (UroLift[®]) procedure may be offered as an option for patients with LUTS

م ۱۱۰۰ ام	Recommendation	Strength rating	4:1-
attrip	Offer Prostatic urethral lift (Urolift [®]) to men with LUTS interested in preserving ejaculatory	Strong	;tile
funct	function, with prostates < 70 mL and no middle lobe.	5	

- To offer rapid recovery without the need for urinary catheter.
- High bladder neck and obstructive median lobe cannot be effectively treated.

Long prostatic urethral lift (pul)

- techr ^{15.} PUL may be offered as an option for patients with LUTS attributed to BPH provided prostate volume <80g and verified absence of an obstructive middle lobe. (Moderate Recommendation; Evidence Level: Grade C)
 - 16. PUL may be offered to eligible patients who desire preservation of erectile and ejaculatory function. (Conditional Recommendation; Evidence Level: Grade C)

ther

Thank you for your attention